The University of Birmingham
School of Computer Science
MSc in Advanced Computer Science

Behvaiour of Complex Systems

Termite Mound Simulator

John S. Montgomery
msc37 jxm@cs.bham.ac.uk
Lecturer: Dr L. Jankovic

May 6, 2004

Contents

2 Technical Specification
2.1 Physics
2.2 Pheremones L
2.3 Simulated Termite Behaviour
2.3.1 Buildingo o oo
2.3.2 Foraging Lo
3 Design
3.1 Model
3.2 View
3.3 Controller
4 Operation
4.1 Basics e
4.2 Termite Parameters
4.3 Pheremone Parameters
44 3D Viewo
5 Sample Results
6 Extensions and Improvements

Introduction

1.1 Real Termites

A Simulation Application and Source Code

w W

= IR er RN R,

© 0o oo

13

15

17

List of Figures

1.1 Magnetic Termite Mound, Litchfield National Park (http://www.travel-

library.com/pacific/australia/nt /venkat/) 4
2.1 An unsupported Termite (Red) will fall towards the ground. . . . 5
2.2 Termite Building (Red), then Foraging (Green) 6
4.1 Main and 3D Views L. 11

Chapter 1

Introduction

1.1 Real Termites

Real (worker) termites (Macrotermes Bellicosus) are small in size, completely
blind and wingless - yet they have been known to build mounds 30 metres in
diameter and several metres high [2]. It is generally accepted that a process
referred to as stigmergy, by Pierre-Paul Grasse, is responsible for allowing such
feats of (insect) engineering and it works in this fashion [1]:

1. The termites move at random dropping pellets of saliva and earth on raised
ground to form small heaps.

2. The small heaps encourage other termites to join in and the biggest heaps
develop into columns.

3. As the columns are built, nearby ones will tend to be built towards each
other.

Figure 1.1 shows a real termite mound, demonstrating the kind of scale that
these termite built structures can achieve.

Figure 1.1: Magnetic Termite Mound, Litchfield National Park
(http://www.travel-library.com/pacific/australia/nt /venkat /)

Chapter 2

Technical Specification

2.1 Physics

The simulation is run using a 3D grid, 128x128x256 elements in size. Each grid
element is either empty or full. The termite agents in the simulation or able to
move about this grid, with a few caveats:

1. ?Unsupported” termites fall under the influence of gravity, until they be-
come supported again (See Figure 2.1).

2. If there are no filled grid elements next to a termite it is considered un-
supported.

3. A termite may choose any empty neighbouring grid positions (26 maxi-
mum) to move into.

4. Elements ”outside” the grid are considered to be full (thus blocking the
termites), except for elements beyond the top the grid (gravity ensures
the termites do not escape beyond that).

5. If a termite happens to find itself ”inside” a full grid element then it is
moved upwards (against gravity) to the nearest empty element.

6. Any number of termites may share same grid location.
H

ElE SlE

Figure 2.1: An unsupported Termite (Red) will fall towards the ground.

Figure 2.2: Termite Building (Red), then Foraging (Green)

This provides for a simple qualitative physics model. The termites are able to
climb over the surface of any objects in the grid - they can even climb upside
down. The moment the move away from the surface too far they will be affected
by gravity and will fall to the ground.

2.2 Pheremones

When a termite decides to build on a grid element (thus making it full) it also
drops some pheremone around the local area. The pheremone is added to an
underlying ”Pheremone Grid” with a certain radius of the termite. The exact
amount of pheremone added to the nearby grid elements is inversely proportional
the distance from the element to the termite. The highest concentration of
pheremone added is at the termites (current) location.

2.3 Simulated Termite Behaviour

Simmulated termites have two basic behaviour states:
1. Building.
2. Foraging.

See Figure 2.2 for an example of this process in action.

2.3.1 Building

Whilst building termites will follow height and pheremone gradients. In other
words they will tend to climb higher and move towards concentrations of pher-
emone. Exactly how much more important height or pheremones are to the

termites decisions is controlled by a set of weights. These weights are combined
with the raw values of the change in height and pheremone levels to compute
a ”score” for a given grid element. However grid elements that would leave
the termite ”unsupported” are given a score of zero, so termites do not try to
jump into the air uneccesarily. Once the scores for the respective grid elements
(including the one the termite currently occupies) have been computed then the
termite chooses which one to move into next. In a similar way to the ants choos-
ing a path in ” Ant Algorithms” [3] the termites have a ”greediness” parameter.
The termites greediness controls how likely the termite is to simple choose the
"best” move. If the best move is not chosen then a move will be chosen using
a roulette wheel/proportional seclection method. The greediness factor in ef-
fect controls how much the termite will tend to meander slightly off the ”best”
route. If at any point the termite chooses its current location (i.e. it chooses
not to move) then this is assumed to mean a local maximum has been reached.
The termite will then randomly decided whether to build at that location (or
to wait till later). If the termite does decided to build at that location, then it’s
behaviour changes to ”foraging” afterwards.

2.3.2 Foraging

Foraging termites simple move randomly, including off the edges of drops, until
they are back on solid ground (i.e. back on the very bottom of the grid). They
are then assumed to pick up more building material and so start ”building”
again.

Chapter 3
Design

<

The design roughly follows the “model, view, controller” paradigm. So each
class can generally be categorised based on where it falls in the MVC approach.
For specific details see the java api documentation supplied and/or the source
code.

3.1 Model

The model classes are:
o Termite
o TermiteSim

They are the core of the simulation. They control what is actually happening,
with respect to the termites building mounds, following pheremones etc.

3.2 View

The view classes are:
e TermiteView
e SplitViews
e Mound3DView

These classes merely present to the user representations of the “model” (i.e. the
simulation). In particular the TermiteView class is used to give the user two-
dimensional views, either side-on or top-down and the Mound3DView is used
to provide a 3D snapshot of the current state of the simulation.

3.3 Controller

The controller classes represent the “wiring” between the view and the model.
They are the classes that mediate user interaction with the model.

e Termites
e TermiteApplet

The Termites class is merely responsible for creating a window, into which the
the main program will run. The TermiteApplet class is the main “controller”.
It sets up the various views and provides interface controls that let the user
interact with those views and also run simulations.

Chapter 4

Operation

4.1 Basics

To run the termite simulation from an executable jar file, either double-click on
it to launch java or use the -jar command:

java —jar termites.jar
Otherwise if one compiles the source code, the “main” class is Termites, so:
java Termites

Should suffice to start the simulation.

Figure 4.1 shows the application running. The top screen-shot shows the
main application window. The two dimensional views use a simple colour scheme
to convey depth. The darker pixels represent structure that is farther from the
view, the lighter (towards yellow) pixels represent those that are closer. The
termites are drawn ! on the structures as single red (building) or green (foraging)
pixels.

The key controls are the three buttons:

e Play/Pause
o New
e 3D

They are all pretty self-explanatory. Play/Pause is used to pause the simulation
and to continue running it. The text on the button changes, depending on
whether the simulation is currently paused or not. New creates a new simulation,
effectively resetting everything. It uses the current settings to make the new
simulation. 3D makes the 3D view appear, which can be used to see a snapshot
of the current built structure.

LA z-buffer is used, so termites may become obscured from view by intervening structure

10

Termites

E Show Termites
| Show Pheremones

€ Pay) New) 30)
rTermites
Termites: 1000
Greediness: 0.3
Height Bias: 2000
Pheremone Bias: 0.1
~Pheremones
Radius: 10
Decay Rate: 0.01

4

Figure 4.1: Main and 3D Views

11

4.2 Termite Parameters

The termite parameters are as follows:
e Termites - how many termites will appear in the simulation.

e Greediness - a probability specifying how likely the termites will always
take the “best” course of action.

e Height Bias - a weight controlling how much the termites favour climbing.

e Pheremone Bias - a weight controlling how much the termites favour fol-
lowing pheremones.

With the exception of the “Termites” parameter, all of these settings can be
changed on the fly. Simply edit the value in the text field and then press
enter to make the value update in the simulation. The number of termites in a
simulation cannot be altered once a simulation is running, so the value of the
“Termites” parameter is only used when a new simulation is started.

4.3 Pheremone Parameters

The pheremone parameters are:
e Radius - how far the pheremones extend.

e Decay Rate - the proportion of the pheremones that are removed at every
time-step.

Both of these parameters can be altered on the fly. As before, edit the values and
then press enter to make them stick. You can see the effects of the pheremones
by ticking the “Show Pheremones” check box.

4.4 3D View

The 3D view creates a snapshot model of the termite mound. The model is ren-
dered using an isometric style, so no foreshortening occurs and can be rotated,
around the z-axis, by clicking then dragging the mouse horizontally. It is also
possible to “zoom” in and out, by pressing the I and O keys.

12

Chapter 5

Sample Results

0060 3DView

‘80O 3D View

000 3D View

4 . e

a) low height bias b) zero greediness ¢) no pheremones
806 3D View

806 3D View

8686 3D View

[Py

s A

d) maximum greediness | e) default parameters | f) lots of termites

A

Table 5.1: Termite Mounds

The mounds shown in Table 5.1 were created using various different parame-

13

ters. In particular mounds b) and c¢) demonstrate quite chaotic structures, with
spires all over the place. Whereas d) shows a highly regular shape - mainly
perfectly straight tall spires and overly ordered.

In terms of how similar to real termite mounds (Figure 1.1) they look f) is
probably the best. This is because using a lot more termites (1000 as opposed
to the usual 100) allows several competing spires to be built close together, in
effect forming a wall. Given the likely numbers of termites in a real colony, one
would imagine that adding more virtual termites to the simulation may result
in increased mimicry of real termite mound shapes. However only up to a point,
as the termite behaviour modelled is probably much simpler than that exhibited
by real termites.

14

Chapter 6

Extensions and
Improvements

There are a couple of cosmetic improvements that could be made. The main
one being to make the main view be 3D (rather than only providing a separate
static view). This would make life a lot easier in terms of understanding what
is going on. If done right it would allow the user to zoom in and possibly even
track a single termites progress. To achieve this kind of interactivity, but still
maintain sensible performance would require a serious amount of work and/or
the use of 3D acceleration, e.g. via Java3D or an OpenGL binding for Java.

As it stands the pheremone model is very simplistic. Currently the phere-
mones are laid down in a static pattern and merely decay over time. A better
approach would be to allow the pheremones to spread slowly over time. The
weight of the pheremone molecules could then be a user alterable parameter,
changing whether pheremones will tend to fall downwards. If the pheremones
spread downwards over the structure this would alter the behaviour of the ter-
mites a lot, as they would become more likely (or less) likely to build around
the bases of spires.

Another extension would be to apply some sort of CA-based structural com-
ponent to building. It may be possible to create a simple cell-based model of
the stresses and strains of the built structure. Then perhaps even simulate be-
haviour that would represent collapse and slides, altering the final shapes. Also
coupled with information concerning the underlying stresses and strains it could
be possible to apply simple genetic algorithms or other optimisation techniques
to find the “perfect” set of parameters for building a termite mound.

15

References

[1] Collective intelligence in social insects.
http://ai-depot.com/Essay/Sociallnsects.html.

[2] Macrotermes bellicosus: Special inspecta investigation.
http://www.insecta-inspecta.com/termites/macrotermes/ .

[3] L.M. Gambardella M. Dorigo, G. Di Caro. Ant algorithms for discrete op-
timization. Artificial Life, 5(2), 1999. Special Stigmergy Issue.

16

Appendix A

Simulation Application and
Source Code

The source code and compiled executable versions of the simulator will be made
available via the authors School of Computer Science personal website at:

http://studentweb.cs.bham.ac.uk/ "msc37jxm/complex-systems/

17

