The University of Birmingham
School of Computer Science
MSc in Advanced Computer Science

Mini-project

Investigating the Drivers of
Co-evolution in a Population of Agents

John S. Montgomery
msc37jxm@cs.bham.ac.uk
Supervisor: Dr L. Jankovic

January 11, 2004

Abstract

To investigate the co-evolution of agents in an artificial environment I have
written a physically based simulation, that uses rigid body mechanics. In this
environment agents receive input from sensors that provide mock sensory data
and using a simple, evolved, neural network determine how to activate their ef-
fectors to propel themselves on a two dimensional plane. Evolution is controlled
by a genetic algorithm that is periodically called as the simulation runs. This
affords us a great deal of top-level control of and feedback from the simulation,
but as the simulation is ongoing the agents still exist in an ”ecology”.

I have focused on the competitive co-evolution of two species in a predator-
prey dynamic. Various simulations were performed with differing simulation and
species parameters to see what affected the ability of each species to compete
effectively.

It was found that the predators in general had a much harder task than the
prey and so were often unable to compete effectively, sometimes even with major
advantages. This has been attributed to the inability of the neural networks
topologies used to foster the detection of motion. This in turn meant that the
predators were unable to effectively intercept their prey. This paves the way for
future extensions that utilise more sophisticated topologies and better methods
for evolving neural networks.

Keywords
Co-evolution, Agents, Physical Simulation, Predator Prey Dynamics, Braiten-
berg Vehicles, Genetic Algorithm.

Contents

1 Introduction

1.1 Simulating Co-evolution
1.1.1 Top Down Simulation
1.1.2 Emergent Simulation

1.2 Top Down and Emergent Simulation .

2 Methods

2.1 Physical Simulation

2.2 Dealing with Collisions

2.3 Simulation Performance

2.4 System Ecology
241 Agents.
2.4.2 Food and Rocks
2.4.3 Genetic Algorithm and Fitness

2.5 Experimental Tools
2.5.1 Simulator
2.5.2 Data Presentation

3 Results and Discussion

3.1 Simple Agents.
311 Runltod
312 Run4
313 Runband6

3.2 More Complex Agents
321 Run7
322 Run8
323 Run9

3.3 Interpretation of Results

4 Conclusion
4.1 Possible Extensions and Improvements

A Mini-project Declaration

12
12
12
13
13
18
18
21
21
24

26
27

30

B Statement of Information Search Strategy 32

B.1 Forms of Literature 32
B.2 Appropriate Search Tools 32
B.3 Search Statements 32
B.4 Search Evaluation 32
C Simulation Application and Source Code 33

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Agent Sensorso 8
Agent Neural Network 9
Fitness: Run 1 (Predator Solid Line, Prey Dotted Line) 14
Fitness: Run 2 (Predator Solid Line, Prey Dotted Line) 15
Fitness: Run 3 (Predator Solid Line, Prey Dotted Line) 16
Fitness: Run 4 (Predator Solid Line, Prey Dotted Line) 17
Fitness: Run 5 (Predator Solid Line, Prey Dotted Line) 19
Fitness: Run 6 (Predator Solid Line, Prey Dotted Line) 20
Fitness: Run 7 (Predator Solid Line, Prey Dotted Line) 22
Fitness: Run 8 (Predator Solid Line, Prey Dotted Line) 23
Fitness: Run 9 (Predator Solid Line, Prey Dotted Line) 25

Chapter 1

Introduction

1.1 Simulating Co-evolution

There has been a lot of work on simulating agents co-evolving in artificial envi-
ronments [6] [8] [9] [10]. These simulations attempt to avoid the ”over-simplicity
of game-theory models” [8], but still make themselves amenable to analysis. I
shall summarise the two broad classes of such simulations and discuss how I
intend to combine approaches from both.

1.1.1 Top Down Simulation

Due to the finite nature of computing power it is often the case that these
simulations are deliberately specific. They often involve evaluating individuals
for specific behaviours in a manner similar to a genetic algorithm [8] [6] [9]. The
simulations impose on the agents a set of desired behaviours (e.g. pursuit and
evasion). They can thus be considered as “top down” simulations, where the
expected ”correct” behaviour is know (at least to some extent) ahead of time.

In Reynolds [6], Cliff & Miller [8] and Sims [9] agents are paired off and
compete directly against each other. There is a definite ”fitness function” used
to rate how well each agent has performed. Multiple evaluations may occur,
but there is still a definite idea of what the agents are meant to do. The fitness
function can then be carefully crafted to apply as much evolutionary pressure as
seems necessary. This approach has the advantage of more efficient use of the
available resources and can still lead to interesting and unexpected results, but
it does still involve "many trade-offs” when "fitness is determined by discrete
competitions between individuals” [9].

1.1.2 Emergent Simulation

The other approach is to simulate as much as possible and leave the simulation
open ended, with the hope that we shall observe interesting emergent behaviour.
This is best typified by PolyWorld [10] in which apart from an ”ad hoc fitness

function” the agents themselves determine when they eat, breed and/or fight.
As so little correct behaviour is specified this has the potential to produce very
interesting agents, but as with the open ended nature of real evolution it works
best with plenty of individuals and a lot of time. It can also be very difficult
to figure out what has actually happened to cause what we have observed.
Braitenberg calls this the "law of uphill analysis and downhill invention” [2],
because it is easy to take lots of simple pieces and put them together, but it can
be very hard to work out how they interact exactly.

Tierra [13] is another example of an emergent simulation, but is concerned
with evolving artificial organisms represented as programs on a virtual machine.
As of such it is more akin to evolving virii than braitenberg style agents. How-
ever it does have the advantage of being truly open ended, as the organisms
very structure is open to evolution, but still surprisingly open to analysis, again
due to the organisms structure.

1.2 Top Down and Emergent Simulation

The intent of this work is to simulate agents somewhere on the middle ground
between the two approaches (Top Down and Emergent). Unlike the top down
simulations [8] [6] [10] [9] the evaluation of an individual agent will not be a one
time thing, but on going. However unlike PolyWorld [10] agents only have to
worry about one thing - staying alive (through securing energy). Also unlike
PolyWorld [10] which sometimes had trouble producing ”Evolutionary Stable
Strategies”, dead agents will not be removed from the simulation immediately,
they will merely have a higher chance of being removed and a lower chance of
being selected for generating offspring.

In effect I am using a genetic algorithm to control the evolution of pop-
ulations of agents in an ongoing simulation. One could view it as a sort of
programmed grim reaper and baby carrying stork, which is to say that life and
death are controlled by entities external to the agents. This affords us a greater
deal of "top down” control over the populations, hopefully letting us rein in
some of the complexity in the simulation.

I have also chosen to study a classic predator-prey dynamic. As of such
there are two separate populations that cannot interbreed, with one population
designated as herbivore and one as carnivore (which implicitly defines their
roles). The predator-prey dynamic is ”important, interesting and useful” [8],
but still fairly simple to comprehend and therefore analyse.

Chapter 2

Methods

2.1 Physical Simulation

The physical simulation consists of relatively simple rigid body mechanics [11]
[3] [4] [5] of Braitenberg [2] style ”Vehicles” (Agents) Each Agent (Vehicle) in
the simulation has position, orientation, mass, moment of inertia, momentum
and angular momentum.

At each time step the effects of applied forces and collisions (impulse forces)
are calculated and the state of the system is updated. Each physical body
(Agent) is also slightly damped and has friction applied to it, to help things
come a a halt when no forces (internal or external) are applied to it. This also
helps with small inaccuracies in the simulation, as they will not have the chance
to cause too much damage.

The Agents have a pair of "motors” that can be used for movement. The mo-
tors are placed around the edges of the Agents boundary and are always aligned
with the Agents current direction. By using the motors either co-operatively or
antagonistically the Agents can move around and change direction, in a man-
ner similar to a tank. That is to say if the motors fire in opposing directions
the Agents will turn on the spot, but if the motors fire in the same direction
the Agent will move in a straight line. Currently the motors are the only way
that an Agents direction can be changed. This is because when collisions occur
the Agents circular shape and the fact that friction is not considered during a
collision means that all other forces applied to an Agent, currently, act through
the centre of gravity and so have no angular effects.

One of the virtues of using rigid body mechanics is that would be trivial to
add more motors to an Agent, possibly positioned at different angles. In particu-
lar it would open up the possibility of evolving an Agents morphology. Evolving
motor placements and body shapes would present an interesting proposition for
studying co-evolution.

2.2 Dealing with Collisions

The Agents can collide with each other, as well as with static objects (food,
rocks etc) and the boundaries of the environment. For a simulation with 200
Agents and roughly the same number of static objects this presents quite a
few collisions to check. In general for N agents and M static objects we would
require (N2 — N)/2 + NM collision checks [7]. For N and M equal to 200 this
would mean 59,900 collision checks. Although an individual collision detection
is not particularly costly (being a simple distance computation) having a large
number of them slow things down a lot.

In a typical, non-pathological, simulation we would expect the Agents and
static objects to be more or less uniformly distributed. We would therefore
expect only relatively small proportion of the objects in the simulation to be
colliding (or near collision). We can exploit an objects spatial location to help
us only consider checking collisions between objects that we already know to be
fairly close.

The simulation space was into a grid [7]. Objects are then placed into
whichever grid square they overlap with (possibly multiple squares). Then col-
lisions are only considered between objects that are in the same grid square.
A little extra work is also needed to avoid repeated collisions, but this is fairly
trivial.

Using this technique we would expect and do achieve better scalability. For
example with N and M equal to 200, as before, and with a 10 by 10 grid (forming
100 squares) we might expect 5 or so static objects and agents in each square.
This would mean for each agent we would only be checking for collisions with 4
other objects (on average). This is a slightly optimistic case, but it would mean
something closer to 1000 collision checks, which is much better than the 59,900
previously needed.

2.3 Simulation Performance

For most of the simulations I have been running performance has been ”better
then real-time”. In the simulation 25 simulation steps equate to 1 second in
simulated time. Even running on relatively out of date hardware (Pentium 2
450Mhz/G3 400Mhz) simulations with 200 agents and 200 fixed objects run
nearly three times faster than real-time. That is to say 180 hours of simulated
time takes just over 60 hours to complete. On the departments cluster running
times are closer to 20 hours.

2.4 System Ecology

2.4.1 Agents

Each agent consists of a simple circular rigid body. In the simulations I have
run each agent has two motors which it can use to move itself around its world

with. They also have had two ”sensor groups”, roughly analogous with eyes.
Each sensor group comprises one light sensor and two colour sensors. Each
light sensor gives a stronger output when something is nearer to it (based on
the square of the distance of the object). The colour sensors work in a similar
way, but their output is additionally modified by the colour of the object, based
on how closely that objects colour matches the sensors colour. The two types
of sensors can then be considered roughly equivalent to rod (light sensors) and
cones (colour sensors) in an eye. Each sensor group is given an equal proportion
of the agents field of vision (Figure 2.1). A sensor group would only ”see”
objects inside its part of the field of vision.

Total Field of Vision

Left Sensors Right Sensors

Figure 2.1: Agent Sensors

The six sensory inputs and two outputs are controlled by a fully connected
feed-forward neural network. The network is also given an additional fixed
input, to help it produce some output even when the sensors are not registering
anything. The neurons are simple summation units (with a bias). This was done
to help create networks that respond in a similar way to those in Braitenberg.
In addition to a bias on each neuron there is also a weight on the connection
between neurons. All biases and weights were only modified through evolution,
no learning occurred during an agents lifetime.

Early simulations made use networks with only input and output neurons -
no intermediate or hidden neurons. Later simulations added four hidden neurons
(Figure 2.2). Due to the fully connected nature of the networks even this handful
of hidden neurons greatly increased the size of the agents genome (from about
20 values for a network, to 44 values). This was one of the problems of such a
simple architecture. Also the fact that non-recurrent networks were used may
limit the potential behaviour of agents. For example they would be unable to
detect differences between successive inputs - limiting their ability to notice
movement.

As well as being able to evolve their neural networks agents also had several
other parameters that could be evolved. Among these were sensor colours (which
colours sensors were affected by), sensor sensitivities, sensor angle, and motor
angle. As these parameters were relatively high level they were convenient for

6 Sensor Inputs and 1 Fixed Input

Figure 2.2: Agent Neural Network

recording throughout a simulation. For example by recording the average sen-
sors colours and sensitivities of a population we could hopefully draw conclusions
about what it was ”interested” in. Sensor angle (the agents field of vision) was
also of interest, because it might reveal parallels with real the real evolution
of predators and prey, where prey tend to have wide fields of vision and prey
tight, forward looking, fields of vision. As opposed to the ”black-box” nature
of a neural network, these parameters can prove useful in a simulation such as
this.

After this there were several user definable parameters. These include motor
power and sensor range. Typically predators were given slightly more motor
power than prey, so that they have a chance of catching them, even if the prey
moves directly away from them. An agents colour (e.g. red for predators and
blue for prey) and eating habits (carnivore or herbivore) could also be specified.

2.4.2 Food and Rocks

The agents environment also contained a number of static objects. There were
two types of object: "food” and ”rocks”.

Rocks are simple static objects that are grey in colour. They only serve to
get in the way of agents, possibly trapping the unwary. When an agent collides
with a rock its energy is reduced slightly. The intent being that this should be
enough to dissuade agents from running into rocks.

For carnivores a piece of food is equivalent a rock, except green in colour.
Only herbivores can ”eat” food. When a herbivore collides with a piece of food
the food is removed from the simulation and the herbivores energy is increased
by a fixed amount. The amount of food in the simulation is kept constant, so
whenever a piece is eaten a new piece will be placed randomly later.

Conversely when a carnivore collides with a herbivore energy is removed
from the herbivore (at least half) and given to the carnivore. The herbivore is
then randomly displaced to another point in the simulation, representing the
fact that it has been ”killed”.

2.4.3 Genetic Algorithm and Fitness

While the simulation runs a pseudo steady-state genetic algorithm (ref Mel
Mitchell) is applied to each population of agents (e.g. the predators and the
prey). Periodically the populations are evaluated. Next either the worst or a
random member of the population is removed, then two parents are selected.
The parents are selected based on there fitness and are recombined (with a
certain probability) and the single offspring is mutated (again with a certain
probability). The offspring then joins the ”juvenile” segment of the population,
which means it does not get selected for removal or breeding initially. Then the
juveniles from the previous selection are promoted to ”adulthood”, so that they
can be selected next time round. In this way the agents gain an initial grace
period in which they can ”catch up” with the rest of the population and not be
at too much of a loss just because they.

The fitness value for an agent can be one of two values, either 1 or -1. If the
agents energy is 1 unit or above then their fitness is 1. It is -1 otherwise. The
two values correspond to whether an agent is ”alive” or ”dead”. By not imme-
diately removing agents from a simulation when their energy is low evolution is,
hopefully, able to have a smoother ride. This is because the fitness only applies
to that one point in time and so having a more continuous fitness function might
prove misleading as some agents may simply be lucky (or unlucky). The best
bet for an agent then is to remain ”alive” for as long as possible, not necessarily
to get lots and lots of energy. Also because of the agents metabolism uses up
their energy, an agent must seek out more energy otherwise it will quickly wind
up dead.

Mutation was fairly straightforward. The only interesting caveat was when
mutating the neural network. As well as basic addition of small random num-
bers, weights in the network could be negated or duplicated. The negation was
intended for very simple networks and allowed a connection to change from in-
hibitory to excitatory (or vice versa) in one step. Duplication of weights was
intended to allow mutation to introduce some network symmetry. Duplicating
the weights for one sensor group to another might prove useful to help an agent
react in the same manner with objects on the left or the right.

Recombination used a standard global discrete recombination for recombin-
ing neural networks. That is each value in the network was probabilistically
chosen from one of the parents. This type of recombination is known to be
quite disruptive unless the networks are already very similar. Due to this re-
combination was not always used when generating offspring.

2.5 Experimental Tools

2.5.1 Simulator

Java was chosen for writing this simulator, because of the authors familiarity
with Java development. The ability to use different operating systems (Mac OS
X and Linux) for development and for running was also a benefit. As the core

10

of the simulator could run without a graphical user interface (GUI), platform
differences in Java implementations could also be avoided.

The main class for running the simulation (without a GUI) was ”projl.Environment”.
This class ran the genetic algorithm (selecting agents to remove and for breed-
ing) and the rigid body simulation. It was also responsible for outputting data
to file and other house keeping tasks.

The rigid body simulation was controlled by the class ”projl.simulator.Simulation”.
This class knew nothing about ” Agents” or the genetic algorithm. It was merely
concerned with ” Vehicles”, other physical objects, the forces acting on them and
collisions between them. To allow specialised collision handling a ” collision han-
dler” could be provided by implementing the interface ” projl.simulator.CollisionHandler”.
The Environment class implemented this interface, so that it would know when
agents had collided with food or with each other, allowing it to make adjust-
ments to their energy among other things.

Vehicles in the simulation could be given a ”brain”, by implementing the
interface ”projl.simulator.Brain”. As the rigid body simulation progressed the
"brain” would be updated with new inputs (from the sensors) and be allowed
to calculate the relevant motor outputs. Among other things this allowed me
to try out hardwired brains, to check that the sensors and motors were working
correctly.

Interfaces for genotypes (projl.evol.Genotype) and phenotypes (projl.evol.Phenotype)
were also created. This helped make it straightforward to try out different geno-
type representations with minimal changes.

2.5.2 Data Presentation

Data from the running simulation was output as plain text comma separated
values (csv). Initially standard spreadsheet software was used to view these files
and generate graphs, but this quickly became cumbersome. As the number of
values being stored increased it became necessary to write a script to process
the data and generate the graphs automatically.

Python and the matplotlib [1] library were used to this end. ”matplotlib
is a pure python 2D plotting library with a Matlab syntax” [1]. It allows the
generation of either PNG (Portable Network Graphic) or PS (Postscript) files.
The former being useful for previewing the graphs after a run and the latter for
inclusion in Latex files (i.e. this report).

11

Chapter 3

Results and Discussion

As the simulations progressed data about the current state of each population
was outputted to a file. This file could then be run through a simple Python
script to generate a series of graphs representing the change of various attributes
over time. This made it quite easy to "eye ball” the data and get a good feel
for what had happened during a run.

All simulations featured 150 pieces of "food” (constantly replenished) and
100 ”rocks” uniformly distributed throughout the environment. The genetic
algorithm was set to run once every 100 time-steps (4 simulated seconds), when
an agent from each population would be removed and replaced with an offspring
from the remaining population.

Unless otherwise mentioned graphs were generated using a ” moving average”
of 100 points, to help smooth out the otherwise quite noisy data.

On all graphs the predators fitness is shown as a solid line whilst the preys
is shown as a dotted line.

3.1 Simple Agents

Early runs (Figures 3.1- 3.6) used very simple neural network controllers with no
hidden neurons. The simple network architecture meant that analysing results
was easier, there were only so many things that the agents could do with their
inputs.

3.1.1 Run1l1lto3

Runs 1 to 3 (Figures 3.1- 3.3 were ”baseline” runs. Their objective was simply
to see what was ”"normal” for a simulation. The only real difference between
them was that in Runs 2 and 3 the size of the environment was increased. The
increase in size made to see if this would affect the evolution of the field of vision
of the agents.

12

There were 100 prey agents and 50 predator agents in each run. As can be
seen there is a fair bit of variation in how both species average fitness changes
over time. It is however fairly safe to say that the predators never completely
dominate and at worst pretty much fail to compete. This is probably because
the predators task is much harder, as they have to find moving targets. The
predators usually seemed to turn this problem on its head: predators were
observed circling on the spot (in reverse). They would then lunge at any prey
that came nearby, using there greater motor power to try and close the gap
quickly. This tactic was only really possible because the agents sensors had a
very limited range. For the agents it was a bit like wandering in very thick fog,
so actively pursuing prey was very difficult, as it did not take much for them
to move out of sight. Due to the stateless nature of the agents networks, out of
sight meant out of mind too.

Increasing the environment size appeared to have a slight effect on how the
field of vision evolved. It seemed that increasing the environment size tended
to increase the prey agents field of vision, because a side effect of increasing the
environment size was to make the environment sparser. This would mean that
having ”precise” sensors for navigating in a dense space were not required, so
the prey could afford to ”keep their eyes out” for predators instead. However
due to the small number of simulations actually run (7 total), this is not a
statistically significant observation.

3.1.2 Run 4

The intent of Run 4 (Figure 3.4) was to see what effect increasing the predators
population size had on their ability to compete - would they be more competitive
or less? The predators population size was increased to 100, to equal that of
the prey.

The increased population size did made the the predators, collectively, much
more competitive. In all three simulations performed the predators and prey
were closely matched. This may have been simply the case that the increased
population size made it more likely that viable predators would be contained in
the initial, random, population.

The increased population size also raised the average age of the predators. As
the same number of agents were being removed at the same rate as previously,
doubling the population tended to halve the chance that any particular agent
would be removed. This would tend to make the genetic algorithm a bit more
forgiving and so agents that were actually doing quite well, but were just unlucky
in their current situation (e.g. being far away from prey) would tend to have a
slightly longer time to move to a better location.

3.1.3 Run 5 and 6

Up until this point the predators had always had a speed advantage or more
precisely a motor power advantage. This allowed them to accelerate faster and
potentially reach higher speeds than the prey. I now wanted to see whether

13

Average Fitness
T T T

0.1

Il Il Il Il Il Il Il Il Il
0 800000 1600000 2400000 3200000 4000000 4800000 5600000 6400000 7200000 8000000
Time

Average Fitness
T T T

Fitness

L L L L L L L L L
0 800000 1600000 2400000 3200000 4000000 4800000 5600000 6400000 7200000 8000000
Time

Figure 3.1: Fitness: Run 1 (Predator Solid Line, Prey Dotted Line)

14

Average Fitness
T T T

0.1

Il Il Il Il Il Il Il Il Il
-0 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

Average Fitness
T T T

-0.09
-0.18
-0.27
-0.36

045 F

Fitness

054

y |) | | | | | | |
0 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

Figure 3.2: Fitness: Run 2 (Predator Solid Line, Prey Dotted Line)

15

o1 Average Fitness
i agg Himess

-0.08 -

-0.17

026
H
£
Z
071 1
r | , | | | , . . .
08 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time
o1 Average Fitness
.] T T
ok
2
1
g
Z
o, | | | | | . , .
0 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time
Average Fitness
-02 T T I
027
-0.34
041
0.48
H
2 -ossf
& ;
0.62
-0.69 1
076 1
083+ -
ool 0
09 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000

Time

Figure 3.3: Fitness: Run 3 (Predator Solid Line, Prey Dotted Line)

16

. . . {\verage Flmess‘ . . .

Fitness
S
o

-0.56

-0.62

-0.68

074

| | | | | | . . .
1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

(\verage aness‘

017

-0.24

-0.31

-0.38

Fitness
s
&

-0.59

-0.66

-0.73

. . . . ,
1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

-0.18

-0.26

-0.34

Fitness
S
o

-0.58 7

-0.66

-0.74

-0.82

. . . {\verage Flmess‘ . . .

-0.90

Figure 3.4: F

| | | | | | . . .
1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

itness: Run 4 (Predator Solid Line, Prey Dotted Line)

17

the predators really needed this advantage or not and if they did could they be
given a different advantage instead?

Run 5 (Figure 3.5) was a completely ”fair” simulation. Both population
sizes were the same (100) and the predators had no speed advantage.

Tellingly the predators did not do very well at all. In fact in one particular
simulation the prey showed a near ”perfect” fitness curve (inverse exponential
in nature). In that case the prey must have hardly worried about the predators
at all. The prey in that run had a very sensitive green sensor and were then
probably relying on basic light sensor to avoid the predators. By comparison
the predators colour sensors were both setup to react more to a combination
of red and green, which seems a fairly bad combination considering that the
prey were blue! Although the use of a realistic physical model meant that prey
could not turn on the spot and run exactly away [6] and thus never be caught,
it appeared that this was not enough for the predators. Perhaps the simplistic
nature of the networks made it difficult to really take advantage of this.

Run 6 (Figure 3.6) was the same as run 5, except that the sensor range of
the prey was halved, to give the predators a slightly different advantage.

The predators performed nearly as badly as they had done in Run 5. A
larger sensor advantage may have been required. It may have been the case
that the prey could cope with the smaller sensor range as their food was static
and they only needed enough sensor range to avoid predators at the last minute,
who could still be quite easily "lost”.

3.2 More Complex Agents

Later runs (Figures 3.7- 3.9) used networks with four hidden neurons for at
least one of the species. The hope being that this would lead to potentially
more interesting behaviour.

3.2.1 Run 7

Run 7 (Figure 3.7) was another ”fair” simulation. Both populations were equal
in size and the only difference between them were their eating habits. However as
opposed to run 5 (another fair simulation) the agents neural network controllers
had four hidden neurons. The intention of this simulation was to the observe
the effects (if any) of increasing the complexity of the agents neural networks.
Would there be any noticeable differences when compared with Run 5?7 Would
the predators be able to exploit the increased network complexity to gain some
sort of advantage?

Just like in run 5 the ”fairness” of the simulation meant that the predators
were unable to compete effectively. In three of the simulations the predators
barely improved through out the run. The average network variation (the aver-
age difference between all networks in a species) stayed relatively high for the
predators, where as the prey usually settled down a bit.

18

o — ‘Averag‘e aness‘

0.09F
018F 4
027f -

036

Fitness
s
&

-0.72

-0.81

. . . . ,
1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

Average Fitness
] T T

-0.18 -

-0.26 -

-0.34-

-0.42

Fitness
S
o

-0.58

-0.66

074

, , . , , . . .
0 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

o1 . . . {\verage Flmess‘ i

Fitness

| | | | | | . . .
0 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

Figure 3.5: Fitness: Run 5 (Predator Solid Line, Prey Dotted Line)

19

Average Fitness
T T T

-0.27 1

034 g

-0.41

0481} g

0.5 1

Fitness

0.62 ,
-0.69¢

-0.76

Il Il Il Il Il Il Il Il Il
7o 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

Average Fitness
T T T

Fitness

|) | | | | | | |
0 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
Time

Figure 3.6: Fitness: Run 6 (Predator Solid Line, Prey Dotted Line)

20

Perhaps the predators would eventually find a good network setup to allow
them to capture prey effectively, but it looked like it might take a while. It may
have been interesting to have run this simulation with larger populations. It
may simply have been that the more complex networks meant that the initial
random population was unlikely to contain good predators.

An interesting side effect of increasing the network complexity is that for
the first time the motor angle parameter actually evolved in a meaningful way.
Usually this parameter, which controls the position of the motors on the agent
body, stayed largely fixed at 90 degrees. Occasional agents may have different
motor angles through mutation, but these rarely carried through into the rest of
the population. In a few of these simulations the motor angle of the herbivores
changed for extended periods of time. The increase was only by about 5 de-
grees, but it was quite pronounced. I presume that the non-linear nature of the
network now allowed the agent to take advantage of a slightly less linear control
mechanism. It may be possible that this enabled the prey to more accurately
control their movements.

3.2.2 Run 8

Run 8 (Figure 3.8) re-introduced the predators speed (motor power) advantage.
This was the same as setup as run 4, but with more complex networks. The
goal of this run was to gauge the effects of the more complex networks under the
conditions in which previously the predators had performed well. One would
expect the predators to have compete as well as in run 4.

In fact this was not the case. Compared to Run 7, where the predators did
not have any advantage, there was an improvement. The increase in network
complexity must have been to blame, as everything else was the same as in Run
4. Tt appears that finding a usable network for the prey was easier and quicker
then finding an equivalent one for the predators.

As with Run 7 the prey evolved their motor angle. This happened in all but
one of the simulations in Run 8. It seemed that the (slight) increased threat
of the speed advantaged predators may have necessitated this change. Moving
the motors off from 90 degrees to either side would have the effect of changing
an agents turning behaviour. The motors would now a slightly smaller turning
effect, perhaps allowing prey to be more precise about how they turn. This
could be a great benefit when trying to avoid predators, as over-steering could
prove fatal.

3.2.3 Run 9

In Run 9 (Figure 3.9) the predators retained their speed advantage and the prey
lost the more complex network. The aim of this experiment was to see if the
predators could take advantage of the complex network, if the prey did not also
have one.

Overall the predators did better than in the previous run (Run 8), but they
were still not really threatening the prey very much. By comparison with Run

21

os Average Fitness

054

05 i kK R

062

066

Fitness

074

078]

082

036)

T00000 3200000 3800000 6300000 8000000 9600000 11200000 12800000 1400000 16000000
Time

Average Fitness

036

042

048 i : H

054

0|

Fitness

066

072

T600000 3200000 8000006400000 0000009600000 11200000 13800000 14400000 16000000

Average Fitness

028 4 : Ly

036 5 G OREETY

044

052

0|

Fitness

068
076)
084

WWWVMJ’MM

TE00000 3200000 8000006300000 8000000 9600000 11200000 12800000 1400000 16000000
Time

092]

-))) Average Fitness

19— 4

028

037-

06—

055

Fitness

om-"

o2

091-

0 1600000 3200000 4800000 6400000 S000000 9600000 11200000 12500000 14400000 16000000
Time

Fitness

Fitness

Fitness

Average Fitness

07— F

G 1600000 3200000 3500000 6400000 H0D0000 9600000 11200000 12500000 1400000 16000000

Time

Average Fitness

o2

03—

041 - e ¥ # i §
8-
055
062-
0695,
076+

os3-

0 1600000 3200000 4500000 6400000 000000 9600000 11200000 12500000 1400000 1600
Time

Average Fitness

65—

07~

075-

G 1600000 3200000 %0000 6300000 5000000 9600000 11200000 12500000 13400000 1600
Time

0000

0000

Figure 3.7: Fitness: Run 7 (Predator Solid Line, Prey Dotted Line)

22

Fitness

Fitness

Fitness

65—

02

03—

041 -

8-

055

062-

02

03—

1600000

200000 5000006300000

SO00000 5600000 11200000 12800000 14400000 1600

4000000 8000000

2000000 16000000 20000000 24000000 28000000 32000000 36000000 4000
Time

0000

0000

Fitness

Fitness

027

034

41—

45—

0s5-

Average Fitness

1600000

200000 5000006400000 5000000 9600000

Time

T1200000 12500000 1300000 1600

036

042

048

054

0|

066

012

Average Fitness

2000000

5000000

3000000 16000000 20000000 21000000 25000000 32000000 36000000 1000
Time

0000

0000

Figure 3.8: Fitness: Run 8 (Predator Solid Line, Prey Dotted Line)

23

4, when the predators also had the simple networks, the performance was much
worse. So it seemed that the complex network was actually a hindrance!

The added complexity of the predators network was probably simply too
much for them. It may be that the mutation and recombinations operators
used were inappropriate for the more complex network and so evolution was
hampered. The only thing worth noting about using the more complex was
that the predators at least seemed more mobile and less likely to ”wait and
pounce”. However this might have been exactly their problem - this behaviour
may be an effective strategy that proved harder to evolve with the more complex
network topology.

3.3 Interpretation of Results

It appears from most of the simulations performed that the predators generally
had a harder time of it than the prey. Run 4 (Figure 3.4) was the only Run in
which the predators achieved similar fitness values to their prey and even then
that was with a big speed advantage and a large population. This seemed to be
mainly because the sensors were quite ineffective.

More complex networks did not guarantee better fitness and/or sophisticated
behaviour. I suspect that this is because the increased network size tended to
slow down evolution. It also may well be the case that the wrong type of com-
plexity was used. For example networks that contained recursive connections
might have been a better choice.

24

Average Fitne

008 -

016~ L K

024

032~ o

Fitn

o000

18- .

026- {4

034

0424

5t

osss
ossr
o7
osz
% 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
“Time

Average Fitness
ors- :
026- : —

034- . .

6 TG00 3200000 R00000_ 6400000 S00D0T_ 5600000 11200000 12500000 13400000 16000000
Time

Average Fitness

o1

02

03

04t

Fitness.

6t

07

o8-

6 TG00 3200000 R0 6400000 S00D0T_ 5600000 11200000 12500000 13400000 16000000
Time

Average Fitness

o~ ATESY
034~ " 3 / g
041~
05+

s

Fitness

e

e

076

THO0000 200000 TR00000 500000 SU00000 G600 1200000 13800000 1100000 T600000.
Time

Fitness

Fitness

Fitness.

Fitness

03

st

06+

65-

07

075

7 To00000 5200000 FRO0000 G000 0000009600000 1120000 12800000 100000 TE000000
Time

Average Fitness,

oss-
0si:
06t
oser
ani]
om
osa
% 1600000 3200000 4800000 6400000 8000000 9600000 11200000 12800000 14400000 16000000
“Time
Average Fitness

009- -

01—

021~

‘57 Te0n00 5200000 4500000640000 000000 5600000 1120000 12500000 14400000 16000000
Time

Average Fitness

034- s

41— ¥

48—

55—

06+

0765

‘57 Te0n00 5200000 4500000640000 000000 5600000 1120000 12500000 14400000 16000000
Time

Average Fitness,

008~ i -

016~
02425 s i
032
047
a8

056+

0 1600000 3200000 4500000 6400000 SO0ODO 9600000 11200000 12500000 13400000 16000000
Time

Figure 3.9: Fitness: Run 9 (Predator Solid Line, Prey Dotted Line

Chapter 4

Conclusion

I have created an ecological simulator for studying the co-evolution of popula-
tions of agents in an artificial environment. Each agent has sets of sensors that
are rooted in their environment and uses a simple neural network for controlling
how it moves around in the environment.

The evolution of each population of agents is controlled by a genetic algo-
rithm, that works in a steady state fashion, to allow a ”continuous” simulation,
without generational gaps. The fitness of each agent is simply a measure of
whether it is ”alive” or ”"dead” and effects whether an agent should be removed
from the simulation and whether it can breed. As this form of evolution does
not use ”discrete competitions between individuals” [9] agents therefore exist in
a more complex environment, which better represents the interaction between
agents in an ecology.

By using a genetic algorithm to control breeding I have removed some of the
problems associated with producing ”evolutionary stable strategies” [10] that
can occur with complex ecological simulators. This also provides much simpler
feedback to how a particular simulation ran. At the simplest level having an
average fitness value, for a population, helps greatly with judging the relative
performance of individual species. The genetic algorithm also gives me a great
deal of control over the evolution of the agents, but by having a binary fitness
("alive” or ”dead”) I am able to preserve some emergent properties of more
open ended simulations.

I have performed a series of simulations modelling a predator-prey dynamic.
In these simulations it has been observed that the predators task, at least cur-
rently, is much ”harder” then the preys task. This is due in part to the fact
the the predator must pursue moving targets. The current sensors and network
topologies used do not lend themselves well to this task, as there is currently
no way for an agent to determine ”2nd order” information (i.e. velocity). Such
information might allow a predator to not only know where its prey currently
is, but also to be able to predict where it is likely to be. This is also shown by
the fact that simply introducing a more complex network, which could still not
determine velocities, did not help matters and if anything made matters worse

26

for the predators.

This approach to simulating agents in an artificial environment could prove
to be powerful, but is currently not fully exploited due to the simplistic nature
of the agents neural networks and the problems with the sensors.

4.1 Possible Extensions and Improvements

There are several obvious improvements that could be made to this work. Im-
proving the sensors is definitely important, particularly for the predators. It is
hard enough to catch prey without worrying that you might lose sight of them
at any moment. After that tweaks to how the genetic algorithm works may be in
order. In particular mutation and recombination need looking at, as currently
they are rather crude. How agents gain energy, how their metabolism and how
both relate to fitness also needs examining. Otherwise the physical simulation
itself seems to work quite well.

Implementing NEAT [12] would be very interesting, as it would allow net-
works to gain in complexity over time, but initially start out very simple. Given
the predators performance with more complex networks this would be very use-
ful. Tt would then be very interesting to see how each species responded in
response to changes in the network topology of the other. The fact that NEAT
also uses a meaningful recombination operator would hopefully also help things
out a lot.

NEAT would also open up the way for the predators to gain much need
velocity information, as it allows for recurrent connections (thus allowing simple
time delays). Alternatively it would simply be interesting to provide velocity
sensors, which would simply indicate whether another object is moving toward
or away from the agent. Velocity information would mean that predators could
”intercept” prey and hopefully become much more competitive.

It would also be interesting to introduce more morphological effects. For
example allowing agents to have an arbitrary number of motors, with each
exacting a metabolic cost when in use. We might then see agents specialised for
speed and others specialised for efficiency or manoeuvrability.

27

References

[1] Matplotlib. http://matplotlib.sourceforge.net/.

[2] V. Braitenberg. Vehicles: Ezperiments in Synthetic Psychology. MIT Press,
1984.

[3] C.Hecker. Physics, part 1: The next frontier. Game Developer Magazine,
October/November 1996.
http://www.d6.com/users/checker /pdfs/gdmphysl.pdf.

[4] C.Hecker. Physics, part 2: Angular effects. Game Developer Magazine,
December/January 1996.
http://www.d6.com/users/checker /pdfs/gdmphys2.pdf.

[5] C.Hecker. Physics, part 3: Collision response. Game Developer Magazine,
February /March 1997.
http://www.d6.com/users/checker /pdfs/gdmphys3.pdf.

[6] C.W.Reynolds. Competition, coevolution and the game of tag. In R.Brooks
P.Maes, editor, Artificial Life 4, Santa Fe Institue Studies in the Sciences
of Complexity, pages 59—69. MIT Press, 1994.

[7] D.Roberts. Collision detection: Getting the most out of your collision tests.
Technical report, Doctor Dobbs Journal, 1995.
http://www.ddj.com/documents/s=983/ddj9513a/.

[8] D.Cliff G.F.Miller. Co-evolution of pursuit and evasion ii: Simulation meth-
ods and results. In P.Maes M.Mataric J.A.Meyer J.Pollack S.W.Wilson,
editor, From Animals to Animats 4: Proceedings of the Fourth Interna-
tional Conference on Simulation of Adaptive Behavior (SABY6), Complex
Adaptive Systems, pages 506-515. MIT Press, 1996.

[9] K.Sims. Evolving 3d morphology and behavior by competition. In R.Brooks
P.Maes, editor, Artificial Life 4, Santa Fe Institue Studies in the Sciences
of Complexity, pages 28-39. MIT Press, 1994.

[10] L.Yaeger. Computational genetics, physiology, metabolism, neural sys-
tems, learning, vision and behavior or polyworld: Life in a new context. In
C.G.Langton, editor, Artificial Life 3, volume 17 of Santa Fe Institue Stud-
ies in the Sciences of Complexity, pages 263—298. Addison-Wesley, 1994.

28

[11] M.Lunn. A First Course in Mechanics. Oxford University Press, 1991.

[12] K.O. Stanley R.Miikkulainen. Evolving neural networks through augment-
ing topologies. Evolutionary Computation, 10(2), 2002.

[13] T.S.Ray. An approach to the synthesis of life. In C.Langton
C.Taylor J.Farmer S.Rasmussen, editor, Artificial Life 2, Santa Fe Institue
Studies in the Sciences of Complexity, pages 371-408. Addison-Wesley,
1994.

29

Appendix A

Mini-project Declaration

The University of Birmingham
School of Computer Science

MS¢ in Advanced Computer Science

First semester mini-project

This form is 10 be used o declure your choice of mini-project in the first semester of the coturse,
Please complete this form, obtain the signature of your supervisor and post it in the appropriate
assessed work pigeon hole.

Deadline: 16.00 hrs, 23rd October 2003

Mame: S, b < M_J-dw{j

Student number: (2 ? 3 060?'

Mini-project title: LH'“ \qu;lr J.} \.A) PO o T A a8

Mini-project supervisor: 0(L__L- T erous

The following questions should be answered in conjunction with a reading of the course handbook.

Aim af mini-project T .'..rwa.ﬂ-\- ,_L‘ I)J\'JUS o{_ (p—I.Wk"*"" ~

VA o ‘.\ar A}'\vl\ ‘f- .»-L—ud..—-ua‘-xl

i’?:“::;‘ e Coade o stmedadoia #&mﬁ:‘n].\:mii\-m
4.0 f-\.u GAL WA \Awa’ljJ-A Hlang q¥t-,+1

Uasa, J1"«- bl ren asevar . x“fmfu--tl
#‘» J-&m--u- Jai‘um:u., He fc.+; ¥
\3\;\‘) qN.-Ml ?.M-{\,.*U)J-}-."‘a:)
-\ or; B_F oM Ay -~
l\ﬂu -'blv"“r““-bf"\ o -nﬁ

L‘J\MJ\") HL ».auﬁ AT r-mu-J

30

Project management
skills

Briefly explain how
vous will devise g
managentent plin ta
allow Your supervisor
tor evaluate vour
progress

T ol rede o Foetdle ¢
SRR T S I N K1Y S S Y

I wlllil ._._‘il' ((J.l -~ = l‘\\ D r Tealk v
o disms "y frausi o~ He Airadia
D"& u\.ﬁl-\I-P Jl

1 ddvimina m:*
QHM + be w\tl |++‘a\i\3 h a‘““‘)

(_ = pw&

“h'>

Systemuatic literature
skifly

Brigfly explain how
wou will find previeus
relevant work

I SR NEE
Wem ma ey schh wa # ¢ o aatoluthin A ..nf'-w‘_i,
I hU.i‘... 1 ;\\J}\ ".\md. AN

Ke .,._nll T):-.ﬂ.'h P" “‘"‘“‘ J“Tﬂf-“"‘ Ll

Hi)\::h TELRIIT -

Ty cesanrch
Mo ‘Aie jound’ ar = b froon

nho lo.ke Wi v
PTRC Nipe
toﬂ‘}‘l}b\'\m Mnevt-ng oM.

Communication skilly | T oW wan of u—""J \L-*‘-n. sy olen
N S ARiGR Au’atuwh' He ‘f:)l'd-!m reedhia s
skills will you practise | §7* ,h TN Dr Talouic,
during thix mini- T el WAL e “ WMHJ it .l,b R.h
pmject? [P ru..rd\.» I"),.m f- ax T]
e LEN TN ifo'\n.s“‘ fﬁf’

=
Signed (student) @
pae: |4 ! lolo"l
Signed (supervisor): ;‘ Z ‘
D /;ﬁ/ﬁ/ﬂaa‘s

Office use:
fow student /sy isor J file

31

Appendix B

Statement of Information
Search Strategy

B.1 Forms of Literature

Conference papers are likely to be very important as are journal articles. Books
and technical articles will also be relevant, but mainly for specific information
relevant to the implementation of the projects software.

B.2 Appropriate Search Tools

The Engineering Index will be used for locating conference papers and journal
articles, as it is generally up to date and allows the easy viewing of abstracts.
This is essential for deciding whether a paper may be relevant.

B.3 Search Statements

The search terms to be tried are:

red AND queen
simulation AND evolution AND agents

B.4 Search Evaluation

The engineering index search for "red AND queen” returned 5 results that
seemed potentially promising and the search ”simulation AND evolution AND
agents” 11 promising results.

Knowledge of existing work also played a big part in collecting references.

One paper was retrieved after a conversation with a peer.

32

Appendix C

Simulation Application and
Source Code

The source code and compiled executable versions of the simulator will be made
available via the authors School of Computer Science personal website at:

http://studentweb.cs.bham.ac.uk/ msc37jxm/

New Simulation

Rirth Rata 10
808 Species |
jName species |
Population Size 50
‘Mutation Rate 0.5
“Recombination Rate 0.25
" Purple 9
. | Four Sensor Groups | %
270 View k4
Data Direg }
k] "
! Cancel
i

33

